
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 30 October 2023

Johannes Lengler, David Steurer

Lucas Slot, Manuel Wiedmer, Hongjie Chen, Ding Jingqiu

Algorithms & Data Structures Exercise sheet 6 HS 23

The solutions for this sheet are submitted at the beginning of the exercise class on 06 November 2023.

Exercises that are marked by
∗
are challenge exercises. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Data structures.

Exercise 6.1 Finding the i-th smallest key in an AVL tree (1 point).

Let A be an AVL tree (as described in the lecture) with n nodes. Let k1 < k2 < . . . < kn be the keys

of A, in ascending order. For a given 1 ≤ i ≤ n, our goal is to find ki, the i-th smallest key of A.

(a) Suppose i = 1. Describe an algorithm that finds k1 in O(log n) time.

Hint: An AVL tree is a BST (binary search tree).

Solution:

Since A is a BST, we know that for each node v with key key(v), the keys of its left subtree are all

smaller than key(v), while the keys of its right subtree are all greater than key(v). It follows that
k1 can be found by starting at the root node, and then repeatedly moving to the left child, until

we arrive at a node without a left child. As A is an AVL tree, it has depth O(log n), and so this

procedure takes time O(log n).

(b) Describe an algorithm that finds ki in O(i · log n) time.

Hint: You are allowed to make changes to A while executing your algorithm.

Solution:

Using the algorithm of part (a), we can find the smallest key k1 of A in timeO(log n). Then we can

remove the node with key k1 from A in time O(log n), yielding a new AVL tree A′
whose smallest

key is k2. Repeating this procedure i times yields ki, using total time O(i · log n).

It turns out that we can find ki in time O(log n), if we modify the definition of an AVL tree a bit.

(c) Modify the definition of an AVL tree by storing two additional integers sl(v), sr(v) ∈ N in each

node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds

ki in O(log n) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(log n) time, but you are not required to prove that this is the case.

Solution:

The additional integers we store are the sizes 0 ≤ sl(v), sr(v) ≤ n of the left and right subtree

rooted at the left and right child of v, respectively. (This information can be updated in time O(1)
during the rebalancing rotations performed during the insert and remove operations). AssumingA
is modified so that each node contains these integers, our algorithm to find ki proceeds as follows.

Let v0 be the root node ofA. Set i0 = i. We want to find the i0-th smallest key in the subtree rooted

at v0 (which is just A). We consider the following three cases:

(i) If sl(v0) = i0 − 1, we know that there are precisely i0 − 1 keys in the subtree rooted in v0
that are smaller than key(v0); namely the keys in the subtree rooted in the left child of v0.
But that means that key(v0) is the i0-th smallest key in the subtree rooted in v0, and so we

output key(v0).

(ii) If sl(v0) > i0− 1, the i0-th smallest key lies in the subtree rooted in the left child lc(v0) of v0.

(iii) If sl(v0) < i0 − 1, the i0-th smallest key lies in the subtree rooted in the right child rc(v0)
of v0.

Assuming we are in case (ii) or (iii), the idea is to proceed recursively by applying the same proce-

dure to the subtree rooted in the left (resp. right) child of v0.

In case (ii), note that the i0-th smallest key of the subtree rooted in lc(v0) is equal to the i0-th
smallest key of A (since all keys in the right subtree are too large). In this case, we can thus set

v1 = lc(v0) and i1 = i0, and apply the procedure above.

In case (iii), things are slightly more complicated. Note that all sl(v0) keys in the subtree rooted at

lc(v0) are smaller than key(v0), and that key(rc(v0)) > key(v0). That is to say, if we set

i1 = i0 − (sl(v0) + 1),

then the i1-th smallest key in the subtree rooted in v1 = rc(v0) is precisely the i0-th smallest key

in the subtree rooted in v0 (which is what we are after).

We now repeat this procedure until we reach case (i). Each repetition takes O(1) time. We move

one layer down in each repetition. If we ever reach a leaf, we are certainly in case (i). Therefore,

the whole algorithm takes at most O(log n) time (recall that A has depth O(log n)).

Guidelines for correction:

The following 6 elements are important in this exercise. If at least 5 of them are present, award 1 point.
If at least 3 are present, award 1/2 point.

• Explain/mention how BST property allows you to find smallest key in part (a)

• Mention AVL trees have depth O(log n) in part (a)

• Correct idea for part (b).

• Correct idea (recursive) for part (c).

• Correct case distinction in part (c).

• Correct derivation of the update rules for v0, i0 in part (c) (when moving into the right subtree).

Exercise 6.2 Round and square brackets.

A string of characters on the alphabet {A, . . . , Z, (,), [,]} is called well-formed if either

2

1. It does not contain any round or square brackets, or

2. It can be obtained from an empty string by performing a sequence of the following operations,

in any order and with an arbitrary number of repetitions:

(a) Take two non-empty well-formed strings a and b and concatenate them to obtain ab,

(b) Take a well-formed string a and add a pair of round brackets around it to obtain (a),

(c) Take a well-formed string a and add a pair of square brackets around it to obtain [a].

The above reflects the intuitive definition that all brackets in the string are ‘matched’ by a bracket of the

same type. For example, s = FOO(BAR[A]), is well-formed, since it is the concatenation of s1 = FOO,

which is well-formed by 1., and s2 = (BAR[A]), which is also well-formed. String s2 is well-formed

because it is obtained by operation 2(b) from s3 = BAR[A], which is well-formed as the concatenation

of well-formed strings s4 = BAR (by 1.) and s5 = [A] (by 2(c) and 1.). String t = FOO[(BAR]) is not

well-formed, since there is no way to obtain it from the above rules. Indeed, to be able to insert the

only pair of square brackets according to the rules, its content t1 = (BARmust be well-formed, but this

is impossible since t1 contains only one bracket.

Provide an algorithm that determines whether a string of characters is well-formed. Justify briefly why

your algorithm is correct, and provide a precise analysis of its complexity.

Hint: Use a data structure from the last exercise sheet.

Solution:

Weuse a stack providing standard pop, push, and isEmpty operations. Given a stackS, S.pop() removes

and returns the element on top of the stack, if it exists, and a constant None otherwise, while S.push(x)
pushes x onto the top of the stack, and S.isEmpty() returns a boolean indicating whether the stack is

empty or not. Finally, we assume a function emptyStack that initializes and returns an empty stack.

Our algorithm is as follows:

Algorithm 1 Detecting well-formed strings

function IsWellFormed(s)
S ← emptyStack()
for i ∈ {0, ..., |s| − 1} do

if s[i] = “(” then
S.push(“(”)

else if s[i] = “[” then
S.push(“[”)

else if s[i] = “)” then
if S.pop() ̸= “(” then

return False

else if s[i] = “]” then
if S.pop() ̸= “[” then

return False

return S.isEmpty()

Correctness. First, we see that we can completely ignore non-bracket characters to determine well-

formedness. The correctness of our algorithm then results from the following invariant: for all s, the
for loop of IsWellFormed(s) terminates (without returning early) in a configuration with an empty

stack if and only if s is well-formed.

3

We can prove this by induction on the length of s.

Base case: If s has length 0, then it is empty. Then s is well-formed and IsWellFormed(s) indeed
terminates immediately with an empty stack.

Induction hypothesis: Let n > 0. Assume that for all s of length |s| ≤ n − 1, the for loop of

IsWellFormed(s) terminates (without returning early) in a configuration with an empty stack if and

only if s is well-formed.

Induction step: Let s be a well-formed string of length n. First, assume that s is well-formed. There

are three cases:

• If s is of the form ab with 0 < |a|, |b| < |s|, then by our induction hypothesis the for loop

of IsWellFormed(a) and IsWellFormed(b) terminates in a configuration with an empty stack.

When running IsWellFormed(s), the first |a| iterations of the for loop are exactly the same as in

IsWellFormed(a), and we end up with an empty stack after |a| iterations. Then, we run exactly

the same |b| steps as in IsWellFormed(b), ending up again with an empty stack. We successfully

return True.

• If s is of the form (a), then running IsWellFormed(s) first pushes “(” onto the stack, and

then runs the same steps (from iterations 1 to |s| − 2) as in IsWellFormed(a), but with the

additional “(” element remaining at the bottom of the stack. By our induction hypothesis, the

stack contains only “(” after iteration |s| − 2, after which iteration |s| − 1 removes “(” from the

stack and terminates successfully.

• The argument is similar for s = [a].

Conversely, assume that IsWellFormed(s) returns True. We distinguish between two cases:

• If S is empty after some intermediate iteration i ∈ {0, . . . , |s| − 2}, consider such an i. Then the

successful execution of IsWellFormed(s) is exactly the concatenation of two successful execu-

tions of IsWellFormed(s[0..i]) and IsWellFormed(s[i + 1..|s| − 1]). Hence, by our induction

hypothesis, s[0..i] and s[i + 1..|s| − 1] are well-formed, and their concatenation s is also well-

formed.

• If S is never empty in any intermediate iteration, then we observe that the first element is

pushed onto the stack and is never popped before the very last iteration. For this last pop to

succeed, the first and last character of s must be matching brackets (i.e., () or []). Moreover,

as the element at the bottom of the stack is never popped except in the last iteration and the

final stack is empty, iterations 1 to |s| − 2 must be exactly identical to a successful execution of

IsWellFormed(s[1..|s| − 2]). Hence, by our induction hypothesis, s[1..|s| − 2] is a well-formed

string, and so is s which is either (s[1..|s| − 2]) or [s[1..|s| − 2]].

Remark. The above constitutes a formal proof of the correctness of the algorithm, provided for the

sake of completeness. A more informal argument would also be counted as correct.

Complexity. Each iteration of the for loop has run time complexityO(1): stack operations areO(1),
and we execute at most one such operation per iteration, along with at most 5 constant-time tests

and at most one constant-time return statement. As there are |s| iterations in total and the rest of the

operations are constant-time, we get a total run time complexity in O(|s|).

Dynamic programming.

4

Exercise 6.3 Introduction to dynamic programming (1 point).

Consider the recurrence

A1 = 1

A2 = 2

A3 = 3

A4 = 4

An = An−1 +An−3 + 2An−4 for n ≥ 5.

(a) Provide a recursive function (using pseudo code) that computes An for n ∈ N. You do not have to

argue correctness.

Solution:

Algorithm 2 A(n)

if n ≤ 4 then
return n

else
return A(n− 1) +A(n− 3) + 2A(n− 4)

(b) Lower bound the run time of your recursion from (a) by Ω(Cn) for some constant C > 1.

Solution:

The number T (n) of operations for a call A(n) is given by the recurrence

T (1) = T (2) = T (3) = T (4) = 1

and

T (n) = T (n− 1) + T (n− 3) + T (n− 4) + d,

where d is a positive constant.

The following section is an informal reasoning how we come up with a guess for the lower bound

we can prove and is not part of the proof. We assume for one moment that T is monotonously

increasing. Note that the proof in the end will not use this assumption, it is just to come up with

the statement we want to prove. For n ≥ 5, we then have T (n) ≥ 3T (n−4). Iterating this formula,

we get

T (n) ≥ 3T (n− 4) ≥ 9T (n− 8) ≥ . . . ≥ 3kT (n− 4k)

for k ∈ N with k < n
4 . Choosing k ≈ n

4 , we come up with the guess T (n) ≥ 3n/4. However, this

is not yet correct for n = 1, 2, 3, 4. We fix this by claiming that T (n) ≥ 1
3 · 3

n/4.

We now continue with the proof and want to show T (n) ≥ 1
3 · 3

n/4
by induction.

• Base Case.
For n ∈ N with n ≤ 4, we have T (n) = 1 ≥ 1

3 · 3
n/4

since n/4 ≤ 1 implies 3n/4 ≤ 3.

• Induction Hypothesis.
Assume that for some integer k ≥ 5 the statement holds for all k′ < k.

5

• Induction Step.
We compute

T (k) = T (k − 1) + T (k − 3) + T (k − 4) + d

≥ 1

3
· 3(k−1)/4 +

1

3
· 3(k−3)/4 +

1

3
· 3(k−4)/4

≥ 1

3
·
(
3(k−4)/4 + 3(k−4)/4 + 3(k−4)/4

)
=

1

3
· 3 · 3k/4−1

=
1

3
· 3k/4.

Thus, the statement also holds for k.
By the principle of mathematical induction, T (n) ≥ 1

3 · 3
n/4

holds for every n ∈ N.

Hence, the run time of the algorithm in (a) is T (n) ≥ 1
3 · 3

n/4 ≥ Ω(Cn) for C = 31/4 > 1.
Remark: With a bit more care, it can be shown by induction that T (n) = Θ(ϕn), where ϕ ≈ 1.618 is
the unique positive solution of x4 = x3 + x+ 1.

(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved

algorithm and analyze its run time.

Solution:

Algorithm 3 Compute An using memoization

memory← n-dimensional array filled with (−1)s
function A Mem(n)

if memory[n] ̸= −1 then ▷ If An is already computed.

return memory[n]

if n ≤ 4 then
memory[n]← n
return n

else
An ← A Mem(n− 1) + A Mem(n− 3) + 2A Mem(n− 4)
memory[n]← An

return An

When calling A Mem(n), each Ak for 1 ≤ k ≤ n is computed exactly once and then stored in

memory. Thus the run time of A Mem(n) is Θ(n).

(d) Compute An using bottom-up dynamic programming and state the run time of your algorithm.

Address the following aspects in your solution:

(1) Definition of the DP table: What are the dimensions of the tableDP [. . .]? What is the meaning

of each entry?

(2) Computation of an entry: How can an entry be computed from the values of other entries?

Specify the base cases, i.e., the entries that do not depend on others.

(3) Calculation order: In which order can entries be computed so that values needed for each entry

have been determined in previous steps?

(4) Extracting the solution: How can the final solution be extracted once the table has been filled?

6

(5) Run time: What is the run time of your solution?

Solution:

• Dimensions of the DP table: The DP table is linear, its size is n.

• Definition of the DP table: DP [k] contains Ak for 1 ≤ k ≤ n.

• Calculation of an entry: InitializeDP [1] to 1,DP [2] to 2,DP [3] to 3 andDP [4] to 4. The

entries with k ≥ 5 are computed by DP [k] = DP [k − 1] +DP [k − 3] + 2DP [k − 4].

• Calculation order: We can calculate the entries of DP from smallest to largest.

• Reading the solution: All we have to do is read the value at DP [n].

• Run time: Each entry can be computed in time Θ(1), so the run time is Θ(n).

Guidelines for correction:

The following 4 points are important elements of this exercise. If 3 or 4 of them are solved correctly, 1
point should be awarded, for 1 or 2, 1/2 point should be awarded and if none are solved correctly, no

points should be awarded.

• Correctly giving a recursive algorithm for part (a).

• Correct idea for the lower bound and proof idea using induction in part (b) (small errors are ok

but the idea needs to be clearly visible).

• Correct idea that with memoization we only need to compute each Ak only once for part (c)

(small errors in the code are ok but the argument why it becomes linear time should be there).

• Correct definition of the DP table and answers to the questions in part (d) (small errors are ok,

but in general 5 out of the 6 questions should be answered correctly).

Exercise 6.4 Jumping game (1 point).

We consider the jumping game from the lecture for the following array of length n = 10:

A[1..n] = [2, 4, 2, 2, 1, 1, 1, 1, 5, 2].

We start at position 1. From our current position i, we may jump a distance of at most A[i] forwards.
Our goal is to reach the end of the array in as few jumps as possible. Recall the dynamic programming

solution given for the problem in the lecture, revolving around the numbers:

M [k] := ‘largest position reachable in at most k jumps’.

In this exercise, we compare two different methods for computing theM [k].

(a) Consider the recursive relation:

M [0] = 1,

M [k] = the maximum element of the array Rk,
(R)

where Rk is the array with indices i in the range 1 ≤ i ≤ M [k − 1] and Rk[i] := A[i] + i.
Compute M [k] for k = 1, 2, . . . ,K using relation (R), where K is the smallest integer for which

M [K] ≥ n = 10. For each 1 ≤ k ≤ K , write down the array Rk used in the recursion. Finally,

compute

∑K
k=1 |Rk|.

7

Solution:

k M [k] Rk

0 1 -

1 3 [2 + 1]

2 6 [2 + 1, 4 + 2, 2 + 3]

3 7 [2 + 1, 4 + 2, 2 + 3, 2 + 4, 1 + 5, 1 + 6]

4 8 [2 + 1, 4 + 2, 2 + 3, 2 + 4, 1 + 5, 1 + 6, 1 + 7]

5 9 [2 + 1, 4 + 2, 2 + 3, 2 + 4, 1 + 5, 1 + 6, 1 + 7, 1 + 8]

K = 6 14 [2 + 1, 4 + 2, 2 + 3, 2 + 4, 1 + 5, 1 + 6, 1 + 7, 1 + 8, 5 + 9]

So,

∑K
k=1 |Rk| = 34.

(b) Now consider the recursive relation:

M ′[0] = 1,

M ′[1] = 1 +A[1],

M ′[k] = the maximum element of the array R′
k,

(R’)

were R′
k is the array with indices i in the rangeM ′[k − 2] < i ≤M ′[k − 1] and R′

k[i] := A[i] + i.
Compute M ′[k] for k = 1, 2, . . . ,K using relation (R’), where K is the smallest integer for which

M ′[K] ≥ n = 10. For each 2 ≤ k ≤ K , write down the array R′
k used in the recursion. Finally,

compute

∑K
k=1 |R′

k|.

Solution:

k M ′[k] R′
k

0 1 -

1 3 -

2 6 [4 + 2, 2 + 3]

3 7 [2 + 4, 1 + 5, 1 + 6]

4 8 [1 + 7]

5 9 [1 + 8]

K = 6 14 [5 + 9]

So,

∑K
k=1 |R′

k| = 8.

(c*) Now let A be an arbitrary array of size n ≥ 2 containing positive, non-repeating
1
integers.

Let M [k],M ′[k] be the numbers computed using relations (R) and (R’), respectively. Prove that

M [k] = M ′[k] for all k ≥ 0.

Hint: Use induction. First show thatM [0] = M ′[0] and thatM [1] = M ′[1]. Then, use the induction
hypothesis ‘M [k− 2] = M ′[k− 2] andM [k− 1] = M ′[k− 1]’ to show thatmaxRk = maxR′

k for
all k ≥ 2.

Solution:

By definition,M [0] = M ′[0]. Note thatR1 := {1+A[1]}, and soM [1] = M ′[1]. For the induction
step, we want to show that maxRk = maxR′

k for k ≥ 2. By definition, maxRk ≥ maxR′
k

1

This assumption is only for convenience in writing the proof.

8

(as Rk ⊇ R′
k). It remains to rule out that maxRk > maxR′

k. Using the induction hypothesis

‘M [k − 2] = M ′[k − 2] and M [k − 1] = M ′[k − 1]’, we see that2

Rk \R′
k = {i+A[i] : 1 ≤ i ≤M [k − 2]} = Rk−1.

It follows that max
(
Rk \R′

k

)
= M [k − 1] < maxRk. We conclude that maxRk = maxR′

k, and

thus M [k] = M ′[k], as desired.

Guidelines for correction:

Award 1/2 points each for part (a) and (b). If there is a mistake in computing the M [k] or Rk (resp.

M ′[k], R′
k) award 0 points for that part. For M [6] and M ′[6], both 10 and 14 should be counted as

correct. Do not subtract points for mistakes in computing the sums

∑K
k=1 |Rk| or

∑K
k=1 |R′

k|.

Exercise 6.5 Longest common subsequence and edit distance.

In this exercise, we are going to consider two examples of problems that have been discussed in the

lecture.

For part (a), we are going to look at the problem of finding the longest common subsequence in two

arrays. So, we are given two arrays,A of length n, andB of lengthm, and we want to find their longest

common subsequence and its length. The subsequence does not have to be contiguous. For example, if

A = [1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is

3. Notice that 8, 2, 3 is another longest common subsequence.

For part (b), we are looking at the problem of determining the edit distance between two sequences. We

are again given two arrays, A of length n, and B of lengthm. We want to find the smallest number of

operations in “change”, “insert” and “remove” that are needed to transform one array into the other. If

for exampleA = [“A”, “N”, “D”] andB = [“A”, “R”, “E”], then the edit distance is 2 since we can perform
2 “change” operations to transform A to B but no less than 2 operations work for transforming A into

B.

(a) Given are the two arrays

A = [7, 6, 3, 2, 8, 4, 5, 1]

and

B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5].

Use the dynamic programming algorithm from the lecture to find the length of a longest common

subsequence and the subsequence itself. Show all necessary tables and information you used to

obtain the solution.

Solution:

As described in the lecture,DP [i, j] denotes the size of the longest common subsequence between

the strings A[1 . . . i] and B[1 . . . j]. Note that we assume that A has indices between 1 and 8, so
A[1 . . . 0] is empty, and similarly for B. Then we get the following DP-table:

2

For two sets A, B we write A \B := {a ∈ A : a ̸∈ B}, that is ‘the elements of A that are not in B’.

9

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 1 1 1

2 0 0 0 0 0 1 1 1 2 2 2

3 0 1 1 1 1 1 1 1 2 2 2

4 0 1 1 1 1 1 1 2 2 2 2

5 0 1 1 1 2 2 2 2 2 2 2

6 0 1 1 1 2 2 2 2 2 3 3

7 0 1 1 1 2 2 2 2 2 3 4

8 0 1 1 1 2 2 3 3 3 3 4

To find some longest common subsequence, we create an array S of lengthDP [n,m] and then we

start moving from cell (n,m) of the DP table in the following way:

If we are in cell (i, j) and DP [i− 1, j] = DP [i, j], we move to DP [i− 1, j].

Otherwise, if DP [i, j − 1] = DP [i, j], we move to DP [i, j − 1].

Otherwise, by definition of theDP table,DP [i− 1, j − 1] = DP [i, j]− 1 and A[i] = B[j], so we
assign S[DP [i, j]]← A[i] and then we move to DP [i− 1, j − 1].

We stop when i = 0 or j = 0.

Using this procedure we find the following longest common subsequence: S = [7, 6, 4, 5].

(b) Define the arrays

A = [“S”, “O”, “R”, “T”]

and

B = [“S”, “E”, “A”, “R”, “C”, “H”].

Use the dynamic programming algorithm from the lecture to find the edit distance between these

arrays. Also determine which operations one needs to achieve this number of operations. Show all

necessary tables and information you used to obtain the solution.

Solution:

As described in the lecture, DP [i, j] denotes the edit distance between the arrays A[1 . . . i] and
B[1 . . . j]. Again, we assume thatA has indices starting from 1, soA[1 . . . 0] is empty, and similarly

for B. As in the lecture we haveDP [i, 0] = i for i between 0 and n,DP [0, j] = j for j between 0
and m and

D[i, j] = min

(
DP [i− 1, j] + 1, DP [i, j − 1] + 1, DP [i− 1, j − 1] +

{
0 ifA[i] = B[j]

1 ifA[i] ̸= B[j]

)

for i between 1 and n and j between 1 and m. Then we get the following DP-table:

10

0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 0 1 2 3 4 5

2 2 1 1 2 3 4 5

3 3 2 2 2 2 3 4

4 4 3 3 3 3 3 4

So, the edit distance between A and B is 4. To get operations that transform A into B, we need to

backtrackwere theminimum (in the definition ofD[i, j]) comes from, starting in cell (i, j) = (n,m).
At every point the first part of the array is A[1..i] and the second part of the array is B[j + 1..m]
and it remains to transform A[1..i] to B[1..j]. If we are in cell (i, j), we do the following:

• IfDP [i, j] = DP [i− 1, j − 1] and A[i] = B[j], we do not need to do an operation and move

on to cell (i− 1, j − 1).

• Otherwise, if DP [i, j] = DP [i − 1, j − 1] + 1 and A[i] ̸= B[j], we do a “change” operation

at position i (we change A[i] to B[j]) and move on to cell (i− 1, j − 1).

• Otherwise, if DP [i, j] = DP [i, j − 1] + 1, we do an “insert” operation at position i+ 1 (we

insert B[j]) and move on to cell (i, j − 1).

• Otherwise, DP [i, j] = DP [i − 1, j] + 1 and we do a “remove” operation at position i (we
remove A[i]) and move on to cell (i− 1, j).

We stop when i = 0. Backtracking the above table gives the following path.

0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 0 1 2 3 4 5

2 2 1 1 2 3 4 5

3 3 2 2 2 2 3 4

4 4 3 3 3 3 3 4

And we get the following operations and intermediate arrays:

Current array Value of i Next operation

[“S”, “O”, “R”, “T”] i = 4 Replace T at position 4 by H

[“S”, “O”, “R”, “H”] i = 3 Insert C at position 4

[“S”, “O”, “R”, “C”, “H”] i = 3 -

[“S”, “O”, “R”, “C”, “H”] i = 2 Replace O at position 2 by A

[“S”, “A”, “R”, “C”, “H”] i = 1 Insert E at position 2

[“S”, “E”, “A”, “R”, “C”, “H”] i = 1 -

[“S”, “E”, “A”, “R”, “C”, “H”] i = 0 -

11

